If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+32x-84=0
a = 1; b = 32; c = -84;
Δ = b2-4ac
Δ = 322-4·1·(-84)
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{85}}{2*1}=\frac{-32-4\sqrt{85}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{85}}{2*1}=\frac{-32+4\sqrt{85}}{2} $
| 4x–3=21 | | 5=19x-7(3x-5) | | 4x+13=3x+20=4x-1=5x-8 | | 12w+105=0 | | .-0.5x+3.55=-4.5 | | 5x=25-20 | | 8y=11+3 | | 8r+2=0 | | 0.75^x=0.1 | | Y=170-x | | y=0.12+9 | | X·9+x=80 | | x(x-3)+x(7-x)=-7 | | 4a^2+8a=2a | | X/3=-4,x= | | Y=130+2x | | -1x^2+(x-1)^2=3 | | Y=130+x | | (x-1)^2=x^2+3 | | 2x-10+3(2x-10)-2(x-5)=0 | | Y=x+130 | | -9k+3(3k-7)=2k+18 | | 7(x+5)-2x-15=0 | | 7(2x-5)=4x-12 | | x(x+4)-x^2=2x-8 | | 19-m=5m-23 | | 4d-4=0 | | 13c+2c+19=8c+12 | | 7x=0,7 | | 2y+1=6y-14 | | 6x+2=20x-5 | | 4(3x-1)=6(x+1) |